

O1 Introduction

01. CEMC redesign project

The goals:

Create the « best-in-class » actuator for spot welding, delivering customer value as:

- Improved productivity
- Higher output quality
- Easy integration
- Cost competitive solution

The product:

- Linear electro-mechanical actuator equipped with 21x5 and 21x10 (coming / Q4-2020) inverted roller screws
- Load up to 25 kN and linear speed of 600 mm/s
- Integrated hollow shaft servomotor
- Modular design with several attachment, position and force feedback options

02 Technical proposal

03. Design overview

- 1. High quality planetary inverted roller screw for highest axial load rating, low axial play and high efficiency
- 2. Push tube
- 3. Scraper seal to keep contamination out
- 4. High quality angular contact ball bearings
- 5. Integrated hollow shaft servomotor
- 6. Position feedback options for compatibility with main brands of robots/controllers
- 7. Fail safe brake option
- 8. Lubrication nipple
- 9. Motor connectors

04. Features and benefits

05. Technical data – natural convection cooling

Technical data

Designation	Symbol	Unit	A3N	B3N	A5N	B5N
Performance data						
Continuous force @ zero speed	F.o.	kN	6,9	6.8	10,4	10,4
Peak force @ zero speed	F_	kN	14,0	13,7	25	25
Dynamic load capacity	c	kN	59	59	59	59
Holding force (motorbrake option)	E	kN	15,8	15,8	15,8	15,8
Max linear speed	v	mm/s	300	300	300	300
Max linear acceleration	a	m/s ²	7	7	7	7
Duty cycle	D	%	100	100	100	100
Mechanical data						
Screw type	2	-	IRS	IBS	IRS	IRS
Screw diameter	d	mm	21	21	21	21
Screw lead	D STORY	mm	5	5	5	5
Lead accuracy	Pacrew	-	G5	G5	G5	G5
Stroke	8	mm	180	180	180	180
Internal overstroke each side	а е	mm	1	1	1	1
Backlash	9 ₀	mm	0.04	0.04	0.04	0.04
Gear reduction	"backlesh	-	1	1	1	1
Inertia	1	10=1 kom2	8	8	8	8
leastic of optional brake	1	10-1 kam2	0.6	0.6	0.6	06
Melakt	Jbrake	Tu Kgiri-	11.4	0,0	10.0	12.0
Weight of actional brake	m	kg	11,4	11,4	12,0	12,0
weight of optional brake	m _{broke}	ĸġ	1,1	1,1	1,1	14
Electrical data						
Motor type	7		servo	servo	servo	servo
Drive voltage supply (nominal)	U	VAG	400	230	400	230
DC bus voltage supply (minimum)	U	V _{pc}	540	325	540	325
Nominal speed	n _{nom}	rpm	3 600	3 430	3 485	3 600
Max speed	n _{max}	rpm	3 600	3 600	3 600	3 600
Nominal torque @ slow speed 1	Teo	Nm	7,8	7,7	11,8	11,8
Nominal current @ slow speed 1	I _D	Ama	5,1	8	7,3	12,5
Peak torque @ slow speed 1	T_00	Nm	15,9	15,6	28,4	28,4
Peak current @ slow speed *	Ipeak	Ama	11	17	19	32
Nominal power	Р	kW	2,7	2,6	3,9	4,0
Torque constant (K, at 25 °C)	ĸ	Nm/ _{Ama}	1,67	1,06	1,76	1,02
Back emf constant at 1 000 rpm (K. at 25 °C)	K.	Vara	0,96	0,61	1,02	0,59
Winding resistance (at 20 °C) 21	R	Ω	4,33	1,74	2,41	0,81
Winding inductance (at 20 °C) 9	Ľ	mH	14.97	6	10.01	3.35
Water flow (max pressure 5 bars)		Vmn	-	-	_	-
Water temperature	-	°C	-	-	-	-
Pole number	-	27	8	8	8	8
insultation class	23	12	н	н	н	H
Thermoswitch	-	~	PTC130	PTC130	PTC130	PTC130
Temperature sensor	2	2	PT1000	PT1000	PT1000	PT1000
Environment						
Ambient temperature	т	10	040	0 +40	0 +40	0
Panoren demotentian	antient	U	0+40 64P	0+40	0+4U	648
pagea of protection	102	15 C	045	040	045	048

¹Stow speed : < 1% max actuator speed Phase to phase

06. Technical data – natural convection cooling

Dimensional drawing

⁹ For brake option, add 46 mm ² Addition length varies depending on the type of feedback device. Please contact Ewellix.

07. Technical data – water cooling

Technical data

Designation	Symbol	Unit	A3W	B3W	A5W	B5W
Performance data						
Continuous force @ zero speed	F.o.	kN	10,3	10,3	18,2	18,4
Peak force @ zero speed	F_	kN	20,1	20,1	25	25
Dynamic load capacity	C	kN	59	59	59	59
Holding force (motorbrake option)	F	kN	15,8	15,8	15,8	15,8
Max linear speed	V	mm/s	300	300	300	300
Max linear acceleration	a	m/s ²	7	7	7	7
Duty cycle	D	96	100	100	100	100
Mechanical data						
Screw type	-	-	RS	RS	RS	RS
Screw diameter	d	mm	21	21	21	21
Screw lead	D	mm	5	5	5	5
ead accuracy	- screw	_	G5	G5	G5	G5
Stroke	8	mm	180	180	180	180
nternal overstroke each side	5	mm	1	1	1	1
Backlash	8	mm	0.04	0.04	0.04	0.04
Sear reduction	- backlash	-	1	1	1	1
nertia	1	10 ⁻⁴ kam ²	8	8	8	8
nertia of optional brake	4	10 ⁻¹ kom ²	0.6	0.6	0.6	0.6
Neight	brake	ka	12.8	12.8	14.2	14.2
Neight of optional brake	m	ka	1.1	1.1	1.1	1.1
weight of optional brake	***braka	ng				
Electrical data			44450	10.000	1100000	100000.000
Motor type	7	7	servo	servo	servo	servo
Drive voltage supply (nominal)	U	VAD	400	230	400	230
DC bus voltage supply (minimum)	U	V _{pc}	540	325	540	325
vominal speed	n _{nom}	rpm	3 275	3 110	3 090	3 230
vlax speed	n _{mas}	rpm	3 600	3 600	3 600	3 600
Nominal torque @ slow speed 1	T _{c0}	Nm	11,7	11,7	20,7	20,9
Nominal current @ slow speed 1	l _o	A _{ma}	7,8	12,3	13,2	23,1
Peak torque @ slow speed 1	T _{p0}	Nm	22,8	22,8	28,4	28,4
Peak current @ slow speed *	peak	Ama	18	28	19	32
Nominal power	Р	кW	4,0	3,8	6,6	7,0
Forque constant (K, at 25 °C)	ĸ	Nm/	1,67	1,06	1,76	1,02
Back emf constant at 1 000 rpm	ĸ,	Vara	0,96	0,61	1,02	0,59
Minding resistance (at 20 °C) 2	в	0	4.33	1.74	2.41	0.81
Minding inductance (at 20 °C) 7	L	mH	14,97	6	10.01	3,35
Nater flow (max pressure 5 bars)	-	Vmn	2	2	2	2
Water temperature	-	°C	2030	2030	2030	2030
Pole number	2	_	8	8	8	В
nsultation class	-	2	н	н	H	н
Thermoswitch	-	-	PTC130	PTC130	PTC130	PTC130
femperature sensor	-	-	PT1000	PT1000	PT1000	PT1000
:nvironment	*	**	0	0	0 40	0
Ampient temperature	antient	*C	0+40	0+40	0+40	0+40
Jegree of protection	IP		54S	54S	54S	54S

⁰ Stow speed : < 1% max actuator speed ⁹ Phase to phase

08. Technical data – water cooling

Dimensional drawing

¹⁾ For brake option, add 46 mm ²⁾ Addition length varies depending on the type of feedback device. Please contact Ewellix.

09. Inverted roller screw

Design features	User benefits	
Large number of contact points	High load carrying capacity and up to 10 times longer service life vs ball screw	
Planetary roller screw concept without recirculation with increased thread strength for a given pitch	Long service life and reliability improving productivity	-0-0-0-
Either nut or shaft can be driven, the non-rotating and translating component acting directly as the push tube	Design flexibility , easier to seal the shaft (with turning nut)	
Custom screw-to-motor attachments for easy integration	Compact , light weight solution with fewer parts for easy installation	

11. Brake option

Safety brake:

- Permanent magnet brake technology
- Supply (standard): 24 VDC +6%/-10%
- Power: 18 W
- Holding torque (at 20°C): 9 Nm
- Holding torque (at 100°C): 8 Nm
- Additional weight: 1,1 kg
- Additional length: 46 mm

12. Modularity – water cooling option

Technical specs:

- Max pressure: 5 bars
- Water flow: 2 l/min
- Water temperature: 20 to 35°

Features:

- Stainless steel body
- Cooling system all around the stator
- Same actuator length as natural cooling
- Additional weight 1.4 kg
- Top or bottom water connections

... + Rear attachment

Brake + Resolver

Water Cooling + Resolver

Brake + SKM36

Water Cooling + Brake + Resolver

... + Rear attachment

... + Rear attachment

336 possible configurations !

15. Standard plugs

Rotatable connector (330° angle)

Power connector:

Supplier ۲

Intercontec

6

- Number of pins
- Reference (rotatable angled) BEDC106 MR 14 00 1216

Resolver connector:

- Supplier •
- Number of pins

- Intercontec 12
- Reference (rotatable angle) AEDC110 MR 04 00 1215

Standard	R1 - R2	
Power conne		
M23 connector 6 pins	Data/signal	Intercontec BEDC106 MR 14 00 1216
1	U	Pin side view
2	V	
3	PE	20 20
4	W	
5	Brake +	and and
6	Brake -	
Housing	Shield	
optional		

Standard	R1 - R2	
Feedback conr	nector pin out	
M23 connector 12 pins	Data/signal	Intercontec AEDC110 MR 04 00 1215
1	Sin +	Pin side view (insert at 20°)
2	Sin -	
3	-	0 3 80
4	Cos +	0 ¹ 0P0 70
5	Cos -	2 10 12 6
6	5.7	2 + 11 5 M
7	Err+	
8	Err -	
9	8 <u>11</u>	
10	PT1000	
11	PT1000	
12	1	
Housing	Shield	

Draft definition (for information only)

16. Customization possibilities

Here's a list of possible customizations, that are all project dependent.

17. Actuator, testing status

•	Test n°	Option/version tested	Start	End	Status	Comments
	1	CEMC2105-180-FMN-A5N-BR1xxx Roller screw lifetime under 14kN load First proto tested	12/2018	10/2019	Finished 100% 20 mio cycles	Speed of 250 mm/s Working force not maintained 5 spots over 4.3 s – 70 spots/min Stator T° = 78°
	2	CEMC2105-180-FMN-A5W-BR1xxx Water cooling and lifetime test under 22kN load	02/2019	07/2019	Finished 100% 6.5 mio cycles	Speed of 250 mm/s Working force not maintained 2 spots over 2.75 s – 21 spots/min Stator T° = 45°
	3	CEMC2105-180-TRA-A5W-BR1xxx Trunnions + anti-rotation testing under 22kN load	10/2019	Q1/2020	45% achieved 4.5 mio cycles	Speed of 250 mm/s Working force not maintained 2 spots over 2.75 s - 21 spots/min Stator T° = 45°
	4	CEMC2105-180-TRN-A5N-BR1xxx Lubrication interval and force accuracy over lifetime with 14kN load	11/2019	Q3/2020	Not yet started	Speed of 250 mm/s Working force not maintained 5 spots over 4.3 s – 70 spots/min
	5	CEMC2105-180-FMN-A5N-BR1xxx-F1 Jedi testing under 14kN load	Q1/2020	Q4/2020	Not yet started	Speed of 250 mm/s Working force not maintained 5 spots over 4.3 s – 70 spots/min

By now **2 test rigs** available.

03 Value proposition

18. Spot welding process details

19. CEMC value proposition

Why would customers buy this?

TECHNICAL

- 1. Highest number of welding spots over actuator lifetime
- 2. Outstanding force repeatability for constant welding quality
- 3. Light-weight construction to reduce welding robot power and size
- 4. Easy integration and fast assembly

Key benefits for spot welding

5. High reliability to minimize downtime

How do we achieve that?

TECHNICAL

- 1. High quality ISR with high dynamic load capacity value
- 2. High quality custom-designed hollow shaft motor
- 3. Limited number of components, smart design features, high power density
- 4. Modular feedback and option system to integrate any type of encoder or resolver, and options like manual override, custom attachments, water cooling
- 5. Interchangeable dimensions with competitors
- 6. High quality key components

		Value	vs previous generation
Q.	Highest number of welding spots	>20 million spots	+100%
О КG	Lightweight construction to reduce welding robot power and size	12,5 kg	-10%
()	High reliability to minimize downtime	10 million spots without relubrication	+500%
$\sim 100\mathrm{km}$	Modularity with various feedback options	336 configurations	Limited feedback options

20. Actual technologies used on welding gun

- 1. Servo-pneumatic actuator
- 2. Electro-mechanical actuator either equipped with :
 - Ball screw
 - Standard planetary roller screw
 - Planetary inverted roller screw

	•			
Features	-			
Positioning precision	-	+	+	+
Power consumption / efficiency		+ +	+	+
Power density / load capacity vs size		-	+	+ +
Compactness / weight	+	-	-	+ +
System integration on the gun & line		-	-	+
System noise		-	+	+ +
Contamination sensitivity	-	+	+ +	+ +

P = Pneumatic BS = Ball Screw RS = Roller Screw ISR = Inverted Roller Screw

RS ISR

RS

P

22. Other applications

CEMC is the ideal solution for **fluid power replacement** where **extreme compactness**, **high power density** and **high stiffness** is a must. Thanks to it's flexible design, it can be adopted in other applications, including:

Industrial Automation

- ✓ Test benches
- ✓ Small E-M presses
- ✓ Dosing & dispensing
- ✓ Simulators

Metals - Continuous casting

- ✓ Air flow regulation
- Cooling spray water valves reg.
- ✓ Vent and hatches adjustment

EWELLIX MAKERS IN MOTION